Power of a Point

Ray Li (rayyli@stanford.edu)

June 29, 2017

1 Introduction

Here are some basic facts about power of a point.

- 1. (Definition of Power) Let P be a point in the plane and ω be a circle with center O and radius R. Then $Pow_{\omega}(P) = PO^2 R^2$ is the power of P with respect to ω .
- 2. (Power of a Point Theorem) Let P be a point in the plane and ω be a circle. A line through P meets ω at A and B, and another one meets it at C and D. Then $PA \cdot PB = PC \cdot PD = \text{Pow}_{\omega}(P)$ (assuming directed lengths).
- 3. (Special Case) When one of the lines is tangent to the circle, we have C = D and $PA \cdot PB = PC^2$.
- 4. (Converse of Power of a Point) Let A, B, C, D be points in a plane, and let AB meet CD at P. Suppose that P is either on both segments AB and CD, or is on neither of them. If $PA \cdot PB = PC \cdot PD$, then A, B, C, D lie on a circle.
- 5. (Power of a Point on coordinates) Let $(x-a)^2 + (y-b)^2 c^2 = 0$ be the equation of a circle in the coordinate plane. For a point P = (x,y), we have $Pow_{\omega}(P) = (x-a)^2 + (y-b)^2 c^2$.
- 6. (Fact) When P is outside ω we have $\operatorname{Pow}_{\omega}(P) > 0$, when P is on ω we have $\operatorname{Pow}_{\omega}(P) = 0$, and when P is inside ω we have $\operatorname{Pow}_{\omega}(P) < 0$
- 7. (Radical axis) Given two circles ω_1 and ω_2 , the locus of points that have equal power to both circles is a line called the *radical axis*.
- 8. (Radical axis obvious fact 1) If ω_1 and ω_2 intersect, the radical axis is through their intersection points.
- 9. (Radical axis obvious fact 2) The radical axis of two circles is perpendicular to the line connecting their centers.
- 10. (Radical center) Let $\omega_1, \omega_2, \omega_3$ be three circles no two of which are concentric. Then the radical axes formed by taking pairs of circles are either concurrent or all parallel.
- 11. (Radical axes involving circle(s) of radius 0) They exist.

2 Problems

- 1. Verify facts 2-10.
- 2. (Classic) Let ω_1, ω_2 be two circles intersecting at points S, T and let points A, B be on ω_1, ω_2 such that AB is tangent to both circles.
 - (a) Let line ST intersect segment AB at M. Show that M is the midpoint of AB.
 - (b) Show that AS/AT = BS/BT.
- 3. Prove the circumcenter exists using power of a point.
- 4. Let C be a point on a semicircle of diameter AB and let D be the midpoint of arc AC. Let E be the projection of D onto the line BC and F the intersection of line AE with the semicircle. Prove that BF bisects the line segment DE.
- 5. Let A, B, C be three points on circle Γ with AB = BC. Let the tangents at A and B to Γ meet at D. Let DC meet Γ again at E. Prove that line AE bisects segment BD.
- 6. (Mock USAJMO 1, 2011) Given two fixed, distinct points B and C on plane \mathcal{P} , find the locus of all points A belonging to \mathcal{P} such that the quadrilateral formed by point A, the midpoint of AB, the centroid of $\triangle ABC$, and the midpoint of AC (in that order) can be inscribed in a circle.
- 7. (USAJMO 2012) Given a triangle ABC, let P and Q be points on segments \overline{AB} and \overline{AC} , respectively, such that AP = AQ. Let S and R be distinct points on segment \overline{BC} such that S lies between B and R, $\angle BPS = \angle PRS$, and $\angle CQR = \angle QSR$. Prove that P, Q, R, S are concyclic.
- 8. (IMO 1995) Let A, B, C, D be four distinct points on a line, in that order. The circles with diameters \overline{AC} and \overline{BD} intersect at X and Y. The line XY meets \overline{BC} at Z. Let P be a point on the line XY other than Z. The line CP intersects the circle with diameter AC at C and M, and the line BP intersects the circle with diameter BD at B and N. Prove that the lines AM, DN, XY are concurrent.
- 9. (Iran 2011) Let ABC be a triangle with altitudes AD, BE, and CF. Let M be the midpoint of BC, and let X and Y be the midpoints of ME and MF, respectively. Let Z be the point on line XY such that $ZA \parallel BC$. Show that ZA = ZM.
- 10. (USAMO 2009) Given circles ω_1 and ω_2 intersecting at points X and Y, let ℓ_1 be a line through the center of ω_1 intersecting ω_2 at points P and Q and let ℓ_2 be a line through the center of ω_2 intersecting ω_1 at points R and S. Prove that if P, Q, R and S lie on a circle then the center of this circle lies on line XY.
- 11. (IMO 2013) Let ABC be an acute triangle with orthocenter H, and let W be a point on the side BC, lying strictly between B and C. The points M and N are the feet of the altitudes from B and C, respectively. Denote by ω_1 the circumcircle of BWN, and let X be the point on ω_1 such that WX is a diameter of ω_1 . Analogously, denote

- by ω_2 the circumcircle of triangle CWM, and let Y be the point such that WY is a diameter of ω_2 . Prove that X, Y and H are collinear.
- 12. (IMO 2009) Let ABC be a triangle with circumcenter O. The points P and Q are interior points of the sides \overline{CA} and \overline{AB} , respectively. Let K, L, and M be the midpoints of the segments BP, CQ, and PQ, respectively, and let Γ be the circle passing through K, L and M. Suppose that the line PQ is tangent to the circle Γ . Prove that OP = OQ.

3 Extra Practice

- 13. (Alex Song) Let ABC be an acute triangle with centroid G and $\angle A > 60^{\circ}$. Let the second intersections of the circumcircles of AGB and AGC with side BC be L and K. Show that L and K lie on segment BC.
- 14. (Euler's Relation) In a triangle with circumcenter O, incenter I, circumradius R, and inradius r, prove that $OI^2 = R(R 2r)$
- 15. (Own) Let A be a point outside circle ω with center O. Line ℓ passes through A and meets ω at X, Y. Let ℓ_1 be another line through A, not necessarily intersecting ω , and let M be on ℓ_1 such that $OM \perp \ell_1$. Let $D \neq M$ be the other intersection of ℓ_1 and the circumcircle of XYM. Find the locus of D as ℓ_1 varies.
- 16. (USAJMO 2012) Given a triangle ABC, let P and Q be points on segments \overline{AB} and \overline{AC} , respectively, such that AP = AQ. Let S and R be distinct points on segment \overline{BC} such that S lies between B and R, $\angle BPS = \angle PRS$, and $\angle CQR = \angle QSR$. Prove that P, Q, R, S are concyclic.
- 17. (ELMO 2012) In acute triangle ABC, let D, E, F denote the feet of the altitudes from A, B, C, respectively, and let ω be the circumcircle of $\triangle AEF$. Let ω_1 and ω_2 be the circles through D tangent to ω at E and F, respectively. Show that ω_1 and ω_2 meet at a point P on BC other than D.
- 18. (USAMO 1990) An acute-angled triangle ABC is given in the plane. The circle with diameter \overline{AB} intersects altitude $\overline{CC'}$ and its extension at points M and N, and the circle with diameter \overline{AC} intersects altitude $\overline{BB'}$ and its extensions at P and Q. Prove that the points M, N, P, Q lie on a common circle.
- 19. (TSTST 2011) Acute triangle ABC is inscribed in circle ω . Let H and O denote its orthocenter and circumcenter, respectively. Let M and N be the midpoints of sides AB and AC, respectively. Rays MH and NH meet ω at P and Q, respectively. Lines MN and PQ meet at R. Prove that $OA \perp RA$.
- 20. (Russia 2011) The perimeter of $\triangle ABC$ is 4. On rays AB, AC, points X, Y are chosen, respectively such that AX = AY = 1. Segments BC and XY intersect at point M. Prove that the perimeter of one of the triangles ABM and ACM is 2.

- 21. (USAMO 1997) Let ABC be a triangle. Take points D, E, F on the perpendicular bisectors of \overline{BC} , \overline{CA} , \overline{AB} respectively. Show that the lines through A, B, C perpendicular to \overline{EF} , \overline{FD} , \overline{DE} respectively are concurrent.
- 22. Let ABC be an acute-angled triangle, and let P and Q be two points on its side BC. Construct a point C_1 in such a way that the convex quadrilateral $APBC_1$ is cyclic, $QC_1 \parallel CA$, and the points C_1 and Q lie on opposite sides of the line AB. Construct a point B_1 in such a way that the convex quadrilateral $AQCB_1$ is cyclic, $PB_1 \parallel BA$, and the points B_1 and P lie on opposite sides of the line AC. Prove that the points B_1 , C_1 , P, and Q lie on a circle.
- 23. (MOP 1998) Let ω_1 and ω_2 be two circles of the same radius, intersecting at A and B. Let O be the midpoint of AB. Let CD be a chord of ω_1 passing through O, and let the segment CD meet ω_2 at P. Let EF be a chord of ω_2 passing through O, and let the segment EF meet ω_1 at Q. Prove that AB, CQ, EP are concurrent.
- 24. (TSTST 2017) Let ABC be a triangle with circumcircle Γ , circumcenter O, and orthocenter H. Assume that $AB \neq AC$. Let M and N be the midpoints of sides AB and AC, respectively, and let E and F be the feet of the altitudes from B and C in $\triangle ABC$, respectively. Let P be the intersection point of line MN with the tangent line to Γ at A. Let Q be the intersection point, other than A, of Γ with the circumcircle of $\triangle AEF$. Let R be the intersection point of lines AQ and EF. Prove that $PR \perp OH$.
- 25. (Japan 2011) Given an acute triangle ABC with the midpoint M of BC. Draw the perpendicular HP from the orthocenter H of ABC to AM. Show that $AM \cdot PM = BM^2$.
- 26. (IMO Shortlist 2009) Let ABC be a triangle. The incircle of ABC touches the sides AB and AC at the points Z and Y, respectively. Let G be the point where the lines BY and CZ meet, and let R and S be points such that the two quadrilaterals BCYR and BCSZ are parallelogram. Prove that GR = GS.
- 27. Prove Brianchon's Theorem using radical axis: Let ABCDEF be a convex hexagon with an inscribed circle. Prove that lines AD, BE and CF concur.